Operating Manual
KostaCLOUDPortalCommunity
  • Quick Start Guide
    • 1.0 KostaCLOUD User Interfaces
    • 1.1 CLOUD Portal
    • 1.2 KostaCLOUD
    • 2.0 First Project
    • 2.1 First Optimization
    • 2.2 First Analysis Dashboard
    • 2.3 Tolerancing
  • Optimization
    • Imaging Optimization
      • Paraxial Metrics
      • Third Order Metrics
      • Real Ray Metrics
      • Wave Metrics
      • System Metrics
      • Tolerancing Metrics
    • Illumination Optimization
  • KostaCLOUD Version Control
    • KostaCLOUD Version Control 101
    • Version Control Management
  • KostaCLOUD
    • Optical Design
      • Optical Design Modes
        • Imaging
          • Non-Sequential Tolerancing
          • Stray Light Analysis
          • Rigorous Coupled Wave Analysis (RCWA)
          • Finite Difference Time Domain (FDTD)
          • Muller Calculus & Transfer Matrix Method (TMM)
          • Gradient Index Optics (GRIN)
          • Wave Tracing
          • Surface Scattering
          • Volumetric Scattering
          • Gratings
        • Illumination
        • Cavity
      • Geometry
        • Element Types
          • Lens
          • Aperture
          • Freeform/Prism
          • Light Pipe/Fiber
        • Surface Types
          • Flat Surface
          • Conic Surface
          • Radial Asphere
          • Zernike Surface
          • Toric Surface
      • Parameter (Optimization)
      • Detection
      • Simulation
      • Analysis
      • Tolerance
      • Data
    • Material Library
      • Optical Materials
  • Advanced Examples
    • Advanced Examples
Powered by GitBook
On this page

Was this helpful?

  1. KostaCLOUD
  2. Optical Design
  3. Optical Design Modes
  4. Imaging

Muller Calculus & Transfer Matrix Method (TMM)

Polarization effects in KostaCLOUD via Muller Calculus & Transfer Matrix Method (TMM)

In KostaCLOUD every ray keeps track of a Polarization Stokes Vector which specifies a mixed polarization state of light which enters into an optical system.

Many people are accustomed to the standard Jones Vector, which is a complex valued vector which can be used to describe solely pure polarization states. A Jones vector can be represented in the following way:

E=[ExeiδxEyeiδy]\bf{E} = \begin{bmatrix} E_x e^{i\delta_x}\\ E_y e^{i\delta_y} \end{bmatrix}E=[Ex​eiδx​Ey​eiδy​​]

We can convert a Jones Vectors into Stokes Vectors in a fixed cartesian basis (as defined previously) as follows:

[IQUV]=[IUnpolarized000]+[Ex2+Ey2Ex2−Ey22ExEycos⁡(δx−δy)−2ExEysin⁡(δx−δy)]\begin{bmatrix} I\\ Q \\ U \\ V \end{bmatrix} =\begin{bmatrix} I_\text{Unpolarized}\\ 0 \\ 0 \\ 0 \end{bmatrix} +\begin{bmatrix} E_x^2+E_y^2\\ E_x^2-E_y^2 \\ 2 E_x E_y \cos(\delta_x -\delta_y) \\ -2 E_x E_y \sin(\delta_x-\delta_y) \end{bmatrix} ​IQUV​​=​IUnpolarized​000​​+​Ex2​+Ey2​Ex2​−Ey2​2Ex​Ey​cos(δx​−δy​)−2Ex​Ey​sin(δx​−δy​)​​

You can specify any simple mixed or pure polarization state of light utilizing Stokes parameters. A mixed state is defined as an unknown state, which translates to a random polarization. As light propagates through a system, it generally turns into a more pure state, as we have a defined system with known interactions. A few Examples are as follows

[I0Q0U0V0]=[1000]\begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} =\begin{bmatrix} 1\\ 0 \\ 0 \\ 0 \end{bmatrix} ​I0​Q0​U0​V0​​​=​1000​​-> Unpolarized Light

[I0Q0U0V0]=[1100]\begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} =\begin{bmatrix} 1\\ 1 \\ 0 \\ 0 \end{bmatrix} ​I0​Q0​U0​V0​​​=​1100​​-> Linear Horizontally Polarized Light, −Q0-Q_0−Q0​ is Linear Vertical Polarized Light

[I0Q0U0V0]=[1010]\begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} =\begin{bmatrix} 1\\ 0 \\ 1 \\ 0 \end{bmatrix} ​I0​Q0​U0​V0​​​=​1010​​-> Linear 45∘45^{\circ}45∘Polarized Light, −U0-U_0−U0​ is Linear −45∘-45^{\circ}−45∘ Polarized Light

[I0Q0U0V0]=[1001]\begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} =\begin{bmatrix} 1\\ 0 \\ 0 \\ 1 \end{bmatrix} ​I0​Q0​U0​V0​​​=​1001​​-> Right Hand Circularly Polarized Light, −V0-V_0−V0​ is Left Hand Circularly Polarized Light

In Reflection of an interface we use the following matrix:

[I′Q′U′V′]=[12(ρs2+ρp2)12(ρs2−ρp2)0012(ρs2−ρp2)12(ρs2+ρp2)0000ρsρpcos⁡(Δρ)−ρsρpsin⁡(Δρ)00−ρsρpsin⁡(Δρ)ρsρpcos⁡(Δρ)][I0Q0U0V0]\begin{bmatrix} I'\\ Q' \\ U' \\ V' \end{bmatrix} =\begin{bmatrix} \frac{1}{2} (\rho_s^2+\rho_p^2) & \frac{1}{2} (\rho_s^2-\rho_p^2) & 0 & 0\\ \frac{1}{2} (\rho_s^2-\rho_p^2) & \frac{1}{2} (\rho_s^2+\rho_p^2) & 0 & 0 \\ 0 & 0 & \rho_s \rho_p \cos(\Delta_\rho) & -\rho_s \rho_p \sin(\Delta_\rho) \\ 0 & 0 & -\rho_s \rho_p \sin(\Delta_\rho) & \rho_s \rho_p \cos(\Delta_\rho) \end{bmatrix} \begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} ​I′Q′U′V′​​=​21​(ρs2​+ρp2​)21​(ρs2​−ρp2​)00​21​(ρs2​−ρp2​)21​(ρs2​+ρp2​)00​00ρs​ρp​cos(Δρ​)−ρs​ρp​sin(Δρ​)​00−ρs​ρp​sin(Δρ​)ρs​ρp​cos(Δρ​)​​​I0​Q0​U0​V0​​​

Where we can relate local quantities to our reflection Fresnel coefficients: ρs=∣rs∣ρp=∣rp∣Δρ=∡rs−∡rp\rho_s = |r_s| \\ \rho_p = |r_p| \\ \Delta_\rho = \measuredangle r_s - \measuredangle r_p ρs​=∣rs​∣ρp​=∣rp​∣Δρ​=∡rs​−∡rp​

In Transmission of an interface we use the following matrix:

[I′Q′U′V′]=[12(τs2+τp2)12(τs2−τp2)0012(τs2−τp2)12(τs2+τp2)0000τsτpcos⁡(Δτ)−τsτpsin⁡(Δτ)00−τsτpsin⁡(Δτ)τsτpcos⁡(Δτ)][I0Q0U0V0]\begin{bmatrix} I'\\ Q' \\ U' \\ V' \end{bmatrix} =\begin{bmatrix} \frac{1}{2} (\tau_s^2+\tau_p^2) & \frac{1}{2} (\tau_s^2-\tau_p^2) & 0 & 0\\ \frac{1}{2} (\tau_s^2-\tau_p^2) & \frac{1}{2} (\tau_s^2+\tau_p^2) & 0 & 0 \\ 0 & 0 & \tau_s \tau_p \cos(\Delta_\tau) & -\tau_s \tau_p \sin(\Delta_\tau) \\ 0 & 0 & -\tau_s \tau_p \sin(\Delta_\tau) & \tau_s \tau_p \cos(\Delta_\tau) \end{bmatrix} \begin{bmatrix} I_0\\ Q_0 \\ U_0 \\ V_0 \end{bmatrix} ​I′Q′U′V′​​=​21​(τs2​+τp2​)21​(τs2​−τp2​)00​21​(τs2​−τp2​)21​(τs2​+τp2​)00​00τs​τp​cos(Δτ​)−τs​τp​sin(Δτ​)​00−τs​τp​sin(Δτ​)τs​τp​cos(Δτ​)​​​I0​Q0​U0​V0​​​

Where we can relate local quantities to our transmission Fresnel coefficients: τs=∣ts∣τp=∣tp∣Δτ=∡ts−∡tp\tau_s = |t_s| \\ \tau_p = |t_p| \\ \Delta_\tau = \measuredangle t_s - \measuredangle t_p \\τs​=∣ts​∣τp​=∣tp​∣Δτ​=∡ts​−∡tp​

In calculating Dielectric Stacks KostaCLOUD utilizes the Transfer Matrix Method (TMM). TMM is projected into the Stokes Vector Space to include effects such as layer thickness, which plays directly into the transmission/reflection Fresnel coefficients. We can calculate an induced phase factor due to each matrix as follows: ϕn=ik∥Δtn\phi_n=i k_\parallel \Delta t_nϕn​=ik∥​Δtn​, where k∥k_\parallelk∥​is the projected wave-vector, Δtn\Delta t_nΔtn​ is our layer thickness. We can then include these in a transfer matrix:

(r/t)total=∏n=1Nmax[eϕn(r/t)n,n+1eϕn(r/t)n,n+1e−ϕne−ϕn](r/t)_\text{total}=\prod_{n=1}^{N_\text{max}} \begin{bmatrix} e^{\phi_n} & (r/t)_{n,n+1} e^{\phi_n} \\ (r/t)_{n,n+1} e^{-\phi_n} & e^{-\phi_n} \end{bmatrix} (r/t)total​=n=1∏Nmax​​[eϕn​(r/t)n,n+1​e−ϕn​​(r/t)n,n+1​eϕn​e−ϕn​​]

References

  1. E. Collett, Field Guide to Polarized Light, SPIE - the International Society for Optical Engineering, Bellingham, WA (2005).

  2. Charalambos C. Katsidis and Dimitrios I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference," Appl. Opt. 41, 3978-3987 (2002)

PreviousFinite Difference Time Domain (FDTD)NextGradient Index Optics (GRIN)

Last updated 1 year ago

Was this helpful?