Operating Manual
KostaCLOUDPortalCommunity
  • Quick Start Guide
    • 1.0 KostaCLOUD User Interfaces
    • 1.1 CLOUD Portal
    • 1.2 KostaCLOUD
    • 2.0 First Project
    • 2.1 First Optimization
    • 2.2 First Analysis Dashboard
    • 2.3 Tolerancing
  • Optimization
    • Imaging Optimization
      • Paraxial Metrics
      • Third Order Metrics
      • Real Ray Metrics
      • Wave Metrics
      • System Metrics
      • Tolerancing Metrics
    • Illumination Optimization
  • KostaCLOUD Version Control
    • KostaCLOUD Version Control 101
    • Version Control Management
  • KostaCLOUD
    • Optical Design
      • Optical Design Modes
        • Imaging
          • Non-Sequential Tolerancing
          • Stray Light Analysis
          • Rigorous Coupled Wave Analysis (RCWA)
          • Finite Difference Time Domain (FDTD)
          • Muller Calculus & Transfer Matrix Method (TMM)
          • Gradient Index Optics (GRIN)
          • Wave Tracing
          • Surface Scattering
          • Volumetric Scattering
          • Gratings
        • Illumination
        • Cavity
      • Geometry
        • Element Types
          • Lens
          • Aperture
          • Freeform/Prism
          • Light Pipe/Fiber
        • Surface Types
          • Flat Surface
          • Conic Surface
          • Radial Asphere
          • Zernike Surface
          • Toric Surface
      • Parameter (Optimization)
      • Detection
      • Simulation
      • Analysis
      • Tolerance
      • Data
    • Material Library
      • Optical Materials
  • Advanced Examples
    • Advanced Examples
Powered by GitBook
On this page

Was this helpful?

  1. KostaCLOUD
  2. Optical Design
  3. Optical Design Modes
  4. Imaging

Gradient Index Optics (GRIN)

Gradient Index Optics Setup and Theory in KostaCLOUD

PreviousMuller Calculus & Transfer Matrix Method (TMM)NextWave Tracing

Last updated 1 year ago

Was this helpful?

In tracing GRIN Optics rays follow curved trajectories due to Fermat's principal, for which in a inhomogeneous refractive media where index depends as a function of position, n(r⃗)n(\vec{r})n(r), we obtain (Ref 1):

δ∫n(r⃗)ds=0\delta\int n(\vec{r}) \text{d}s = 0δ∫n(r)ds=0

By defining a parametric vector r⃗(s)\vec{r}(s)r(s), we can calculate components within the Cartesian Coordinate system, and then using calculus of variations we can obtain the following ray equation:

dds(n(r⃗)dr⃗ds)=∇n(r⃗)\frac{\text{d}}{\text{d}s}(n(\vec{r}) \frac{\text{d}\vec{r}}{\text{d}s}) = \nabla n(\vec{r})dsd​(n(r)dsdr​)=∇n(r)

We can now simply integrate this equation twice to calculate the ray trajectories from an initial position as follows:

r⃗(s)=∫0s1n(r⃗(t′))∫0t′∇n(r⃗(t))dtdt′\vec{r}(s) = \int_0^s\frac{1}{n(\vec{r}(t'))}\int_0^{t'} \nabla n(\vec{r}(t)) \text{d}t\text{d}t'r(s)=∫0s​n(r(t′))1​∫0t′​∇n(r(t))dtdt′

Finally we can calculate the trajectory using an ODE solver. This ODE solver utilizes a higher order symplectic energy loss minimization adaptive step to determine optimal step size, and minimize computation time for computationally rigorous GRIN systems.

References

  1. B. E. Saleh and M. C. Teich, Fundamentals of Photonics, John Wiley & Sons (2019).

  2. Simon Tsaoussis, Hossein Alisafaee, "Ray tracing tool for arbitrary gradient index optical components," Proc. SPIE 11483, Novel Optical Systems, Methods, and Applications XXIII, 114830Y (21 August 2020); doi: 10.1117/12.2569760

Example of Cascaded Luneberg, Maxwell Fisheye, and GRIN9 Profile in KostaCLOUD