Operating Manual
KostaCLOUDPortalCommunity
  • Quick Start Guide
    • 1.0 KostaCLOUD User Interfaces
    • 1.1 CLOUD Portal
    • 1.2 KostaCLOUD
    • 2.0 First Project
    • 2.1 First Optimization
    • 2.2 First Analysis Dashboard
    • 2.3 Tolerancing
  • Optimization
    • Imaging Optimization
      • Paraxial Metrics
      • Third Order Metrics
      • Real Ray Metrics
      • Wave Metrics
      • System Metrics
      • Tolerancing Metrics
    • Illumination Optimization
  • KostaCLOUD Version Control
    • KostaCLOUD Version Control 101
    • Version Control Management
  • KostaCLOUD
    • Optical Design
      • Optical Design Modes
        • Imaging
          • Non-Sequential Tolerancing
          • Stray Light Analysis
          • Rigorous Coupled Wave Analysis (RCWA)
          • Finite Difference Time Domain (FDTD)
          • Muller Calculus & Transfer Matrix Method (TMM)
          • Gradient Index Optics (GRIN)
          • Wave Tracing
          • Surface Scattering
          • Volumetric Scattering
          • Gratings
        • Illumination
        • Cavity
      • Geometry
        • Element Types
          • Lens
          • Aperture
          • Freeform/Prism
          • Light Pipe/Fiber
        • Surface Types
          • Flat Surface
          • Conic Surface
          • Radial Asphere
          • Zernike Surface
          • Toric Surface
      • Parameter (Optimization)
      • Detection
      • Simulation
      • Analysis
      • Tolerance
      • Data
    • Material Library
      • Optical Materials
  • Advanced Examples
    • Advanced Examples
Powered by GitBook
On this page
  • Lambertian Scattering Model
  • ABg Scattering Model
  • Bidirectional Scattering Distribution Function (BSDF)
  • Rayleigh-Rice Scattering Model
  • Beckmann-Kirchoff Scattering Model
  • Harvey-Shack Scattering Model
  • K-Correlation Scattering Model

Was this helpful?

  1. KostaCLOUD
  2. Optical Design
  3. Optical Design Modes
  4. Imaging

Surface Scattering

Surface Scattering in KostaCLOUD

Lambertian Scattering Model

Used for extremely diffusive surfaces. Perfect hemispherical scatter distribution.

Validity

  • Isotropic Surface Roughness

  • Ideal Diffuser.

  • Only valid for perfectly diffusing materials.

BSDF

BSDF(β−β0)=Rπ\text{BSDF}(\beta-\beta_0) = \frac{R}{\pi}BSDF(β−β0​)=πR​

Where β=sin⁡(θscatter)\beta = \sin(\theta_\text{scatter})β=sin(θscatter​), β0=sin⁡(θscatter)\beta_0=\sin(\theta_\text{scatter})β0​=sin(θscatter​) where R is the reflectivity of the sample.

Example Values

These values below were provided by the reference below, and re-presented here. These values are built into the "Simplistic Presets", where the idea of this table for this model in Rich Pfisterer's words: "Approximated Scatter Model"

Surface
R

Ideal diffuser

1

Typical matte paper at normal incidence

0.85

Typical diffuse black paint at normal incidence

0.5

Perfect absorber

0

References

  1. J. E. Harvey, Understanding surface scatter phenomena: A linear systems formulation, SPIE Press, Bellingham (2019).

ABg Scattering Model

Used for approximating smooth surface finishes.

Validity

  • Isotropic Surface Roughness

  • RMS Surface Roughness ≪λ\ll \lambda≪λ (Smooth Surfaces)

  • Surface Roughness is Bandwidth Limited. I.e. The roughness is not just a single sinusoidal frequency, but a spread of frequencies about some dominant frequency.

  • Simplistic Model, Ideal for quick turn-around. Wavelength dependence, and model parameters may differ from reality.

BSDF

BSDF(β−β0)=AB+(β−β0)g\text{BSDF}(\beta-\beta_0) = \frac{A}{B+(\beta-\beta_0)^g}BSDF(β−β0​)=B+(β−β0​)gA​

Where β=sin⁡(θscatter)\beta = \sin(\theta_\text{scatter})β=sin(θscatter​), β0=sin⁡(θscatter)\beta_0=\sin(\theta_\text{scatter})β0​=sin(θscatter​) with some fitting parameters: A,B, and g.

Example Values

These values below were provided by the reference below, and re-presented here. These values are built into the "Simplistic Presets", where the idea of this table for this model in Rich Pfisterer's words: "Approximated Scatter Model"

Polish
g
B
A

Super

2.5

0.00001

Slightly better than Standard

2.0

0.0001

Standard

1.5

0.001

Slightly worse than Standard

1.0

0.01

Polish
g
B
A

Super

2.5

0.00001

Slightly better than Standard

2.0

0.0001

Standard

1.5

0.001

Slightly worse than Standard

1.0

0.01

References

Bidirectional Scattering Distribution Function (BSDF)

Rayleigh-Rice Scattering Model

References

J. E. Harvey, Understanding surface scatter phenomena: A linear systems formulation, SPIE Press, Bellingham (2019).

Beckmann-Kirchoff Scattering Model

References

J. E. Harvey, Understanding surface scatter phenomena: A linear systems formulation, SPIE Press, Bellingham (2019).

Harvey-Shack Scattering Model

References

J. E. Harvey, Understanding surface scatter phenomena: A linear systems formulation, SPIE Press, Bellingham (2019).

K-Correlation Scattering Model

References

J. E. Harvey, Understanding surface scatter phenomena: A linear systems formulation, SPIE Press, Bellingham (2019).

PreviousWave TracingNextVolumetric Scattering

Last updated 1 year ago

Was this helpful?

Sum of ABg Parameters. See for more information.

1.4 (σλ)21.4\:(\frac{\sigma}{\lambda})^21.4(λσ​)2
5.46 (σλ)25.46\:(\frac{\sigma}{\lambda})^25.46(λσ​)2
13.92 (σλ)213.92\: (\frac{\sigma}{\lambda})^213.92(λσ​)2
25.51 (σλ)225.51\: (\frac{\sigma}{\lambda})^225.51(λσ​)2
0.35 (σΔnλ)20.35\:(\frac{\sigma\Delta n}{\lambda})^20.35(λσΔn​)2
1.37 (σΔnλ)21.37\:(\frac{\sigma\Delta n}{\lambda})^21.37(λσΔn​)2
3.50 (σΔnλ)23.50\:(\frac{\sigma\Delta n}{\lambda})^23.50(λσΔn​)2
6.35 (σΔnλ)26.35\: (\frac{\sigma\Delta n}{\lambda})^26.35(λσΔn​)2
Approximated Scatter Models for Stray Light Analysis, Richard N. Pfisterer
Approximated Scatter Models for Stray Light Analysis, Richard N. Pfisterer
ABg